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SUMMARY 
The detailed end-structures of CH~, -Cl, exo-olefin, endo- 

olefin, and -OH ended polyisobutylenes (PIB) have been charac- 
terized by high resolution z~C NMR spectroscopy. Specifically, 
the laC chemical shifts characteristic of the various carbons 
in the following structures have been determined: ~CH2C(CHa)2- 
CH2C(CHa)a, ~CH2C(CHa)2CH2C(CHa)2CI, ~CH2C(CHs)2CH2C(CH3)=CH2, 
~CH2C(CHa)2CH=C(CHa)2, and ~CH2C(CHa)2CH2CH(CHa)CH~OH. The 
structure analysis of model compounds was of utmost help in 
these investigations. The above information is of great value 
for the identification of terminally functional PIBs and anal- 
ysis of reaction mixtures. 

INTRODUCTION 
In the course of ongoing investigations in these labora- 

tories directed toward the synthesis of end-functionalized 
PIBs, need arose to generate detailed spectroscopic information 
for end-group identification purposes. Thus intensive studies 
were carried out to assemble comprehensive z3C chemical shifts 
data in regard to five important end-groups: 

(CHa)aC~PIB~CH2C(CHa)2CI abbreviated by PIB-CI 
(CHa)aC~PIB~CH2C(CHa)=CH2 abbreviated by PIB=CH2 
(CHa)aC~PIB~C(CHa)2CH=C(CHa) 2 abbreviated by PIB-CH=C(CHs)2 
(CHa)aC~PIB~CH2CH(CHa)CH20H abbreviated by PIB-OH 

This paper concerns a summary of these studies, specifi- 
cally, an analysis and tabulation of all the zaC NMR chemical 
shifts associated with the above structures. 

EXPERIMENTAL 
~aC NMR spectra were obtained by a Varian Gemini-200 

spectrometer operating in the Fourier transform mode under con- 
ditions of broad-band proton decoupling, using CDCI~ solutions 
(~30% w/v) at 50.3 MHz. The main parameters were: acquisition 
time = is, pulse width = i0 ps, pulse delay = 0, number of 
transients for model compounds and polymers = 256 and 1280 re- 
spectively, number of data points = 30,016; temperature = 
ambient. 

The chemical shift assignments were made by comparing the 
spectra of model compounds and correlating the systematic shifts 
with structural differences (1-5). Where necessary the assign- 
ments were checked by APT ("attached proton test") experiment 
(11-14). 
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2,2,4,4-Tetramethylpentane was obtained from Chemical 
Samples Co., and 2,4,4-trimethyl-l-pentene and 2,4,4-tri- 
methyl-l-pentanol from Aldrich Chemical Co. 2-Chloro-2,4,4- 
trimethylpentane was prepared from 2,4,4-trimethyl-l-pentene 
by hydrochlorination (15). 

The synthesis of the starting PIB-CI: (CH3)3C(CH2C(CH3)2)n- 
CH2C(CH3)2CI where n %18(M n = 1130 and Mw/M n = i.ii) and its 
functionalizations to PIB=CH 2 and PIB-OH have been described 
(16-18). The PIB-CH=C(CH3)2 was obtained by quantitative 
thermal dehydrochlorination (19) from PIB-CI, which gave a 
mixture of PIB=CH2 (67%) and PIB-CH=C(CH3) 2 (33%). 

RESULTS AND DISCUSSION 
The 13C NMR spectra of PIB-CI, PIB=CH2, PIB-CH=C(CH3)2 

and PIB-OH have been investigated in detail. The analysis of 
the spectra of model compounds has proven invaluable in antic- 
ipating and interpreting the spectra of the polymer samples. 
Figures 1-4 and Tables I and II summarize the data obtained. 
Previous 13C chemical shift information in regard to PIB repeat 
units and some model compounds is available in references 6-10. 

In agreement with earlier studies (9,10) the 13C NMR 
chemical shifts of the methyl, methylene and quaternary car- 
bons of the PIB repeat unit appear, respectively, at 31.54, 
59.86, and 38.43 ppm. The chemical shifts of the end-struc- 
tures were assigned by first determining the chemical shifts 
of simple model compounds with unambiguous assignments and 
subsequently constructing the more complex polymeric struc- 
tures by the use of known additivity parameters and substituent 
effects (1-5). Our assignments and those reported in the lit- 
erature, agree although concentration and solvent effects are 
noticeable. 

The comprehensive identification of the various carbons 
was accomplished by the use of a variet~ of methodologies and 
techniques: i) By the quantitative conversion sequence of 
PIB-C1 ~ PIB=CH2 ---- PIB-OH (17-18) and following the dis- 
appearance/appearance of characteristic chemical shifts. 
Quantitative dehydrochlorination of PIB-Cl by t-BuOK (17) was 
confirmed by the complete disappearance of resonances at 6 = 
71.86 and 35.55 ppm characteristic of ~C(CH3)2CI with the 
simultaneous appearance of resonances at 6 = 144.27, 114.97, 
and 26.01 ppm characteristic of ~C(CH3)(=CH2). Similarly, the 
quantitative hydroboration/peroxidation of PIB=CH2 (18) was 
substantiated by the disappearance of resonances character- 
istic of ~C(CH3)=CH2 with the simultaneous appearance of reso- 
nances at 6 = 69.99, 32.06, and 20.16 ppm characteristic of 
~CH(CH~)CH2OH 2) By making use of the APT experiment. Thus 
the terminal methyl groups (CH3)~C- were differentiated from 
the terminal quaternary carbon (CH3)3C- by observing the in- 
version of the resonance at 6 = 32.83 ppm 3) In spite of the 
nuclear Overhauser effect, an examination of the relative in- 
tensities gave important clues as to the number of carbons 
associated with the individual resonances: For example, the 
resonances at ~ = 32.83, 37.90, and 38.05 ppm indicate one 
carbon atom, those at 6 = 35.55, 30.63, and 31.07 ppm indicate 
two carbons, those at 6 = 32.74 ppm three carbons, and, final- 
ly, the very large signals at ~ = 31.54, 38.43 and 59.86 ppm 
are characteristic of the large number of carbons in the 
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repeat unit in the chain 4) By making use of known additivity 
parameters (1-5) and substituent effects on chemical shifts 
(5), additional clues were obtained as to the nature of the 
various resonances. 

32.83 38.0S 37.90 71.86 

[ ~ CH 3 ~3s.ss CH3_ C_ CH2_ C_ CH2~,~pIB PIB'-'~CH CH 

32.74 31.07 30.63 

+ , , | , , , , | , , , , 

70 65 

+ ' ' + I ' ' ' ' I + ' ' ' i ' ' + ' I ' + ' ' I ' ' ' ' I ~ ' " ' i ' '' 

60 55 50 45 40 35 30 25 PPM 

Figure i. isC NMR spectrum of a (CHs)3C~PIB~C(CH2)2CI (Mn = 
1130 and MwM n = i.ii) 

36.47 

CH 3 144.27 
" ~ i  ~ H P IB"'CH2-- IC- CH2- C = C 2 

~7.3~t -.o3t i . . .  
29.67 26. 01 

LL[ I J , 
' ~ �9 I �9 ' ' ' | ' ' ' + , , , , i , , + 

vo 65 60 ~s . . . .  ~6 45' . . . .  4o' . . . .  35' . . . .  3o' . . . .  ~5 'P'PM 

Figure 2. Aliphatic region of the 13C NMR spectrum of a 
(CH3)~C~PIB~C(CH3)(=CH2) (Mn = 1130 and Mw/M n = 
i. II) 
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Figure 3. Aliphatic region of the 13C NMR spectrum 
of a (CHs)3C~PIB~C(CHa)(=CH2) (67%) and 
(s (33%) mixture 
(M n = 1130 and ~w/~ n = i.ii) obtained by 
thermal dehydrochlorination 
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Figure 4. 13C NMR spectrum of a (CH)3C~PIB~CH(CH3)CH2OH 
(Mn = 1130 and Mw/M n = i. II) 
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