¹³C NMR chemical shifts of polyisobutylene end groups and related model compounds

Sandor Nemes*, Jiaoshi Si**, and Joseph P. Kennedy

Institute of Polymer Science, The University of Akron, Akron, OH 44325-3909, USA

SUMMARY

The detailed end-structures of $CH_{\overline{3}}$, -Cl, exo-olefin, endoolefin, and -OH ended polyisobutylenes (PIB) have been characterized by high resolution ¹³C NMR spectroscopy. Specifically, the ¹³C chemical shifts characteristic of the various carbons in the following structures have been determined: $\sim CH_2C(CH_3)_2$ - $CH_2C(CH_3)_3$, $\sim CH_2C(CH_3)_2CH_2C(CH_3)_2CL$, $\sim CH_2C(CH_3)_2CH_2C(CH_3)=CH_2$, $\sim CH_2C(CH_3)_2CH=C(CH_3)_2$, and $\sim CH_2C(CH_3)_2CH_2CH(CH_3)CH_2OH$. The structure analysis of model compounds was of utmost help in these investigations. The above information is of great value for the identification of terminally functional PIBs and analysis of reaction mixtures.

INTRODUCTION

In the course of ongoing investigations in these laboratories directed toward the synthesis of end-functionalized PIBs, need arose to generate detailed spectroscopic information for end-group identification purposes. Thus intensive studies were carried out to assemble comprehensive ¹³C chemical shifts data in regard to five important end-groups:

(CH ₃) ₃ C ₁ C ₁ C ₁ PIB ₁ C ₁ C(CH ₃) ₂ Cl	abbreviated	by	PIB-Cl
$(CH_3)_3C_{1}C_{1}$ C(CH ₃)=CH ₂	abbreviated	by	PIB=CH ₂
$(CH_3)_3C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}C_{1}$	abbreviated	by	PIB-CH=C(CH ₃) ₂
$(CH_3)_3C_{VV}PIB_{VV}CH_2CH(CH_3)CH_2OH$	abbreviated	by	PIB-OH

This paper concerns a summary of these studies, specifically, an analysis and tabulation of all the ¹³C NMR chemical shifts associated with the above structures.

EXPERIMENTAL

 ^{13}C NMR spectra were obtained by a Varian Gemini-200 spectrometer operating in the Fourier transform mode under conditions of broad-band proton decoupling, using CDCl₃ solutions (~30% w/v) at 50.3 MHz. The main parameters were: acquisition time = 1s, pulse width = 10 μs , pulse delay = 0, number of transients for model compounds and polymers = 256 and 1280 respectively, number of data points = 30,016; temperature = ambient.

The chemical shift assignments were made by comparing the spectra of model compounds and correlating the systematic shifts with structural differences (1-5). Where necessary the assignments were checked by APT ("attached proton test") experiment (11-14).

^{*}Visiting scientist, permanent adress: Department of Applied Chemistry, L. Kossuth University, H-4010 Debrecen 10, Hungary

^{**}Visiting scientist, permanent adress: Xian Modern Chemistry Research Institute, Xian, P.O. Box: 18, People's Republic of China

2,2,4,4-Tetramethylpentane was obtained from Chemical Samples Co., and 2,4,4-trimethyl-1-pentene and 2,4,4-trimethyl-1-pentanol from Aldrich Chemical Co. 2-Chloro-2,4,4trimethylpentane was prepared from 2,4,4-trimethyl-1-pentene by hydrochlorination (15).

The synthesis of the starting PIB-Cl: $(CH_3)_3C(CH_2C(CH_3)_2)_n$ -CH₂C(CH₃)₂Cl where n 1 18(\overline{M}_n = 1130 and $\overline{M}_w/\overline{M}_n$ = 1.11) and its functionalizations to PIB=CH₂ and PIB-OH have been described (16-18). The PIB-CH=C(CH₃)₂ was obtained by quantitative thermal dehydrochlorination (19) from PIB-Cl, which gave a mixture of PIB=CH₂ (67%) and PIB-CH=C(CH₃)₂ (33%).

RESULTS AND DISCUSSION

The ¹³C NMR spectra of PIB-Cl, PIB=CH₂, PIB-CH=C(CH₃)₂ and PIB-OH have been investigated in detail. The analysis of the spectra of model compounds has proven invaluable in anticipating and interpreting the spectra of the polymer samples. Figures 1-4 and Tables I and II summarize the data obtained. Previous ¹³C chemical shift information in regard to PIB repeat units and some model compounds is available in references 6-10.

In agreement with earlier studies (9,10) the ¹³C NMR chemical shifts of the methyl, methylene and guaternary carbons of the PIB repeat unit appear, respectively, at 31.54, 59.86, and 38.43 ppm. The chemical shifts of the end-structures were assigned by first determining the chemical shifts of simple model compounds with unambiguous assignments and subsequently constructing the more complex polymeric structures by the use of known additivity parameters and substituent effects (1-5). Our assignments and those reported in the literature agree although concentration and solvent effects are noticeable.

The comprehensive identification of the various carbons was accomplished by the use of a variety of methodologies and techniques: 1) By the quantitative conversion sequence of PIB-Cl -- PIB=CH₂ -- PIB-OH (17-18) and following the disappearance/appearance of characteristic chemical shifts. Quantitative dehydrochlorination of PIB-Cl by t-BuOK (17) was confirmed by the complete disappearance of resonances at δ = 71.86 and 35.55 ppm characteristic of $\circ C(CH_3)_2 Cl$ with the simultaneous appearance of resonances at $\delta = 144.27$, 114.97, and 26.01 ppm characteristic of $\circ C(CH_3)(=CH_2)$. Similarly, the quantitative hydroboration/peroxidation of PIB=CH₂ (18) was substantiated by the disappearance of resonances characteristic of $\mathcal{NC}(CH_3)=CH_2$ with the simultaneous appearance of resonances at δ = 69.99, 32.06, and 20.16 ppm characteristic of \sim CH(CH₃)CH₂OH 2) By making use of the APT experiment. Thus the terminal methyl groups $(\underline{CH}_3)_3C$ - were differentiated from the terminal quaternary carbon $(CH_3)_3C$ - by observing the inversion of the resonance at $\delta = 32.83$ ppm 3) In spite of the nuclear Overhauser effect, an examination of the relative intensities gave important clues as to the number of carbons associated with the individual resonances: For example, the resonances at δ = 32.83, 37.90, and 38.05 ppm indicate one carbon atom, those at δ = 35.55, 30.63, and 31.07 ppm indicate two carbons, those at δ = 32.74 ppm three carbons, and, finally, the very large signals at $\delta = 31.54$, 38.43 and 59.86 ppm are characteristic of the large number of carbons in the

	Reference	2	This work	6	This work	20	21*	This work
				31.4	31.60	30.13	29.5	30.18
	nt carbons	4-CH ₃ 31.8	4-CH ₃ 32.14	34.8; 4-CH ₃	34.97;4-CH ₃	25.23;4-CH3	24.5; 4-CH ₃	25.36;4-CH ₃
	Pender	2-CH3,	2-CH3,	2-CH ₃	2-CH 3	2-CH ₃	2-CH3	2-CH3
Ę	ີ່ວ	31.8	32.14	31.4	31.60	30.13	29.5	30.18
ift, pr	ຳວ	32.4	32.56	32.4	32.51	31.37	30.7	31.47
ical Sh	ະວ	56.5	56.82	57.9	58.07	51.86	51.3	51.88
Chem	C2	32.4	32.56	71.05	71.71	143.88	142.8	144.31
	c٦	31.8	32.14	34.8	34.97	113.83	113.5	114.17
	Compound	1 2 3 4 5 CH3 CH3 20 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	сн _а — с — сн ₂ — с — сн ₃	CH ₃ CH ₃	$cH_3 - c - cH_2 - c - cH_3$ c_1 cH_3	CH ₃	$cH_2 = c - cH_2 - c - cH_3$	ĊH₃ ĊH₃

н	į
ABLE	
Ĥ	200
	44
	•

¹³C NMR Chemical Shifts and Assignments for Model Compounds

 \star_{0}^{c} ppm from TMS. Original data converted using $\delta^{CS_{1}}$ = 192.8

2-CH₃ 19.70;4-CH₃ 30.07 This work

47.34 30.98 30.07

 $HO - CH_2 - CH - CH_2 - CH_2 - CH_3 = 0.37$ 32.31 CH_3 CH_3 = CH_3 = 0.37 = 0.37 = 0.31

20

2-CH₃ 18.76;4-CH₃ 32.17

 $CH_{3} - C = CH - C - CH_{3}$ 27.98 130.04 135.20 32.17 31.24 $CH_{3} = CH_{3}$ CH_{3} CH_{3}

	H	
ĽΕ	E	

TABLE II ¹³C NMR Chemical Shifts and Assignments for Polyisobutylene End Groups

	Chen	nical Sh	ift, ppm						
Identification PIB	сı	C2	c3	°,	C s	°ວ	Pende	nt carbons	Reference
1 2 3 4 5 6	15 55	, , , ,	50 1 E	ц С О Г	0				
$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_2$	F/ • 70	CO.7C		cn.oc	4c • oc	I	z-CH3	32.14	XIOM STUL
ch _s ch _s ch _s							4-CH ₃	31.07	This work
CH ₃ CH ₃ CH ₃	35.55	71.86	59.31	37.90	58.69	1	2-CH3	35.55	This work
$CH_3 - c - CH_2 - c - c - CH_2 - c - c - c - c - c - c - c - c - c - $							4-CH3	30.63	This work
ĊI ĊH₃ ĊH₃	ı	71.55	1	1	I	ı		,	5
	,	71.6	ı	1	I	ı		1	9
CH ₃ CH ₃	114.97	144.27	54.03	36.47	57.32	38.13	2-CH ₃	26.01	This work
$CH_2 = c - CH_2 - c - cH_2 - cH_2 - cH_2$							4-CH ₃	29.67	This work
cH ₃ cH ₃ cH ₃	114.30	143.75	53.65	I	I	I	2-CH	25.65	8
	114	144	1	1	ı	ı		t	10
CH ₃ CH ₃							2-CH3	19.21	
$CH_3 - C_1 - C_1 - C_1 - C_1 - C_1$	28.68	128.51	136.03	37.36	58.22	37.88	4-CH ₃	32.60	This work
ĊH₃ ĊH₃ ĊH₃							6-CH ₃	31.33	
ĊH³ ĊH³							2-CH ₃	20.16	
$HO - CH_2 - CH - CH_2 - CH_2 - CH_3 - CH_3$	69.99	32.06	49.74	36.08	57.05	38.11	4-CH ₃	29.41	This work
ĊH₃ ĊH₃ ĊH₃							6-CH3	31.30	

repeat unit in the chain 4) By making use of known additivity parameters (1-5) and substituent effects on chemical shifts (5), additional clues were obtained as to the nature of the various resonances.

 ^{13}C NMR spectrum of a (CH₃) $_{3}C{\rm \sc PIB}{\rm \sc C}(CH_{2})_{2}Cl$ ($\overline{\rm M}_{n}$ = 1130 and $\overline{\rm M}_{w}\overline{\rm M}_{n}$ = 1.11) Figure 1.

ACKNOWLEDGEMENT

This work was supported by NOVA Petrochemicals Inc.

REFERENCES

- D. M. Grant and E. G. Paul, J. Amer. Chem. Soc., 86, 2984 1. (1964)
- L. P. Lindeman and J. Q. Adams, Anal. Chem., 43, 1245 2. (1971)
- 3. C. J. Carman, A. R. Tarpley, Jr., and J. H. Goldstein, Macromolecules, <u>6</u>, 719 (1973)
- 4. J. C. Randall, J. Polym. Sci., Polym. Phys. Ed., 13, 901 (1975)
- 5. H.-O. Kalinowski, S. Berger and S. Braun, Carbon-13 NMR Spectroscopy, John Wiley & Sons, Chichester, 1988, Chapter 3
- M. Tessier, A. H. Nguyen and E. Marechal, Polym. Bull., 4, 6. 111 (1981)
- 7. V.S.C. Chang and J. P. Kennedy, Polym. Bull., 4, 513 (1981)
- 8.
- M. Tessier and E. Marechal, Polym. Bull., <u>10</u>, 152 (1983)
 M. Tessier and E. Marechal, Eur. Polym. J., <u>22</u>, 889 (1986) 9. 10. M. K. Mishra, E. R. Santee, Jr., and J. P. Kennedy, Polym. Bull., <u>15</u>, 469 (1986)
- 11. Ref. 5, Chapter 2
- 12. E. Breitmaier, and W. Voelter, Carbon-13 NMR Spectroscopy, 3rd ed., VCH Verlagsgesellschaft mbH, Weinheim, 1987, Chapter 2
- 13. J. N. Schoolery: APT for ¹³C NMR Spectrum Interpretation, Research and Application Notes, Varian NMR Applications Laboratory, Palo Alto, California, U.S.A., 1981
- 14. S. L. Patt and J. N. Schoolery, J. Magn. Reson., 46, 535 (1982)
- 15. F. C. Whitmore, C. D. Wilson, J. V. Capinjola, C. O. Tongberg, G. H. Fleming, R. V. McGrew and J. N. Cosby, J. Amer. Chem. Soc., <u>63</u>, 2041 (1941)
- 16. G. Kaszas, J. E. Puskas, C. C. Chen and J. P. Kennedy, Polym. Bull., <u>20</u>, 413 (1988)
- 17. J. P. Kennedy, V.S.C. Chang, R. A. Smith and B. Ivan,
- Polym. Bull., <u>1</u>, 575 (1979)
 18. B. Ivan, J. P. Kennedy and V.S.C. Chang, J. Polym. Sci., Polym. Chem. Ed., <u>18</u>, 3177 (1980)
 19. B. Ivan, J. P. Kennedy, T. Kelen and F. Tudos, J.
- Macromol. Sci.-Chem., <u>A16</u>, 533 (1981)
- 20. P. A. Couperus, A.D.H. Clague and J.P.C.M. van Dongen, Org. Magn. Reson., 8, 426 (1976)
- 21. D. E. Dorman, M. Jautelat and J. D. Roberts, J. Org. Chem., 19, 2757 (1971)

Accepted March 26, 1990 K