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3C NMR chemical shifts of polyisobutylene end groups
and related model compounds
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SUMMARY

The detailed end-structures of CHy, -Cl, exo-olefin, endo-
olefin, and -OH ended polyisobutylenes (PIB) have been charac-
terized by high resolution !'3C NMR spectroscopy. Specifically,
the '3C chemical shifts characteristic of the various carbons
in the following structures have been determined: ~CH,C(CH;),-
CH,C(CH;)s, "“CH,C(CH;),CH,C(CH;),Cl, ~CH,C(CH;),CH,C(CH;)=CH,,
~CH,C(CH,) ,CH=C(CH;),, and “CH,C(CH;),CH,CH(CH;)CH,0H. The
structure analysis of model compounds was of utmost help in
these investigations. The above information is of great value
for the identification of terminally functional PIBs and anal-
ysis of reaction mixtures.

INTRODUCTION

In the course of ongoing investigations in these labora-
tories directed toward the synthesis of end-functionalized
PIBs, need arose to generate detailed spectroscopic information
for end-group identification purposes. Thus intensive studies
were carried out to assemble comprehensive !3C chemical shifts
data in regard to five important end-groups:

(CH, ) ;CvanPIBAAACH,C(CH, ) ,C1 abbreviated by PIB-Cl
(CH;) ;CvunPIBAWANCH,C(CH, )=CH, abbreviated by PIB=CH,
(CH,) ;C v PIBAAC(CH,) ,CH=C(CH;), abbreviated by PIB-CH=C(CH;),
(CH; ) ;CAvAAPIBMWWACH,CH(CH, ) CH,0H abbreviated by PIB-OH

This paper concerns a summary of these studies, specifi-
cally, an analysis and tabulation of all the !3%C NMR chemical
shifts assocliated with the above structures.

EXPERIMENTAL

13C NMR spectra were obtained by a Varian Gemini-200
spectrometer operating in the Fourier transform mode under con-
ditions of broad-band proton decoupling, using CDCl, solutions
(n30% w/v) at 50.3 MHz. The main parameters were: acquisition
time = 1s, pulse width = 10 us, pulse delay = 0, number of
transients for model compounds and polymers = 256 and 1280 re-
spectively, number of data points = 30,016; temperature =
ambient.

The chemical shift assignments were made by comparing the
spectra of model compounds and correlating the systematic shifts
with structural differences (1-5). Where necessary the assign-
ments were checked by APT ("attached proton test") experiment
(11-14).
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2,2,4,4-Tetramethylpentane was obtained from Chem%cal
Samples Co., and 2,4,4-trimethyl-l-pentene and 2,4,4-tri-
methyl-1-pentanol from Aldrich Chemical Co. 2-Chloro-2,4,4-
trimethylpentane was prepared from 2,4,4-trimethyl-l-pentene
by hydrochlorination (15).

The synthesis of the starting PIB-Cl: {CH;) sC(CH,C(CH;),)n~
CH,C(CH,),Cl where n %¥18(M, = 1130 and My/Mp = 1.11) and its
functionalizations to PIB=CH, and PIB-OH have been described
(16-18). The PIB-CH=C(CH;), was obtained by quantitative
thermal dehydrochlorination (19) from PIB-Cl, which gave a
mixture of PIB=CH, (67%) and PIB-CH=C(CH,), (33%).

RESULTS AND DISCUSSION

The '3C NMR spectra of PIB-Cl, PIB=CH,, PIB-CH=C(CH,),
and PIB-OH have been investigated in detail. The analysis of
the spectra of model compounds has proven invaluable in antic-
ipating and interpreting the spectra of the polymer samples.
Figures 1-4 and Tables I and II summarize the data obtained.
Previous !3C chemical shift information in regard to PIB repeat
units and some model compounds is available in references 6-10.

In agreement with earlier studies (9,10) the !3C NMR
chemical shifts of the methyl, methylene and quaternary car-
bons of the PIB repeat unit appear, respectively, at 31.54,
59.86, and 38.43 ppm. The chemical shifts of the end-struc-
tures were assigned by first determining the chemical shifts
of simple model compounds with unambiguous assignments and
subsequently constructing the more complex polymeric struc-
tures by the use of known additivity parameters and substituent
effects (1-5). Our assignments and those reported in the 1lit-
erature agree although concentration and solvent effects are
noticeable.

The comprehensive identification of the various carbons
was accomplished by the use of a variety of methodologies and
techniques: 1) By the quantitative conversion sequence of
PIB-Cl —= PIB=CH, — PIB-OH (17-18) and following the dis-
appearance/appearance of characteristic chemical shifts.
Quantitative dehydrochlorination of PIB-Cl by t-BuOK (17) was
confirmed by the complete disappearance of resonances at § =
71.86 and 35.55 ppm characteristic of WC(CH;),Cl with the
simultaneous appearance of resonances at § = 144.27, 114.97,
and 26.01 ppm characteristic of ~C(CH,){(=CH,). Similarly, the
quantitative hydroboration/peroxidation of PIB=CH, (18) was
substantiated by the disappearance of resonances character-
istic of ~C{CH,}=CH, with the simultaneous appearance of reso-
nances at § = 69.99, 32.06, and 20.16 ppm characteristic of
WCH(CH;)CH,0H 2) By making use of the APT experiment. Thus
the terminal methyl groups (CH;),C- were differentiated from
the terminal quaternary carbon (CH;);C~ by observing the in-
version of the resonance at § = 32.83 ppm 3) In spite of the
nuclear Overhauser effect, an examination of the relative in-
tensities gave important clues as to the number of carbons
associated with the individual resonances: For example, the
resonances at 6§ = 32.83, 37.90, and 38.05 ppm indicate one
carbon atom, those at ¢ = 35.55, 30.63, and 31.07 ppm indicate
two carbons, those at 6§ = 32.74 ppm three carbons, and, final-
ly, the very large signals at § = 31.54, 38.43 and 59.86 ppm
are characteristic of the large number of carbons in the
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repeat unit in the chain 4) By making use of known additivity
parameters (1-5) and substituent effects on chemical shifts
(5), additional clues were obtained as to the nature of the
various resonances.
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Figure 1. 13C NMR spectrum of a (CH;),CVPIBAC(CH,),Cl (M, =
1130 and MM, = 1.11)
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Figure 2. Aliphatic region of the !3C NMR spectrum _of a
{c¥1; sCVWPIBVC(CH; ) (=CH,) (Mp = 1130 and My /M, =
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Figure 3. Aliphatic region of the !3C NMR spectrum

of a (CH;3)3CVvPIBAVC(CH,) (=CH,) (67%) and
(CH;) 3VPIBVC(CH;),CH=C(CH;), (33%) mixture

(Mp = 1130 and W,/M, = 1.11) obtained by
thermal dehydrochlorination

38.21 36.08
32.06
N\ 3
PIBmi— CHy =G Chy= CH—Ciy= O
cis | s} o |
1 57.05 49.74| 69.99
31.30  29.41  20.16

_L L | J

"70° 65 60 55 50 45 ' 40 35 ' 30 25 ' 20 PPM

Figure 4.

13C NMR spectrum of a (CH);CVPIBVCH(CH;)CH,OH
(Mp = 1130 and My/Mp = 1.11)
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